Solutions to Quiz 1, ECED 3300, 2019

Problem 1

By definition,

$$
\nabla \times \mathbf{A}=\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x+c_{1} z & z+c_{2} y & y+c_{3} x
\end{array}\right|=\mathbf{a}_{x}(1-1)-\mathbf{a}_{y}\left(c_{3}-c_{1}\right)+0 \mathbf{a}_{z}
$$

The vector equation $\nabla \times \mathbf{A}=0$ implies that $c_{3}=c_{1}$. Thus, whenever $c_{1}=c_{3}$ and for arbitrary c_{2}, the field is irrotational, i.e, it has a zero curl everywhere.

Problem 2

Let us first work out the flux of $\mathbf{F}=\mathbf{a}_{r}$ over the surface of a unit sphere. In this case, $\mathbf{a}_{n}=\mathbf{a}_{r}$ and $d \mathbf{S}=\mathbf{a}_{r} \sin \theta d \theta d \phi$ because on the sphere $r=1$. It follows that

$$
\begin{equation*}
\oint d \mathbf{S} \cdot \mathbf{F}=\int_{0}^{\pi} d \theta \sin \theta \int_{0}^{2 \pi} d \phi\left(\mathbf{a}_{r} \cdot \mathbf{a}_{r}\right)=\left.2 \pi(-\cos \theta)\right|_{0} ^{\pi}=\underline{4 \pi} . \tag{1}
\end{equation*}
$$

On the other hand,

$$
\nabla \cdot \mathbf{F}=\frac{1}{r^{2}} \partial_{r}\left(r^{2}\right)=\frac{2}{r}
$$

It follows that

$$
\begin{equation*}
\int d v \nabla \cdot \mathbf{F}=\underbrace{\int_{0}^{1} d r r^{2} \times\left(\frac{2}{r}\right)}_{=1} \underbrace{\int_{0}^{\pi} d \theta \sin \theta}_{=2} \underbrace{\int_{0}^{2 \pi} d \phi}_{=2 \pi}=\underline{4 \pi} . \tag{2}
\end{equation*}
$$

It can be inferred from Eqs. (1) and (2) that

$$
\oint d \mathbf{S} \cdot \mathbf{F}=\int d v \nabla \cdot \mathbf{F},
$$

thereby verifying Gauss's theorem.

Problem 3

a) Using the vector identity,

$$
(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d}) \equiv(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})
$$

we obtain,

$$
f=\left(\mathbf{a}_{z} \times \mathbf{r}\right) \cdot\left(\mathbf{a}_{z} \times \mathbf{r}\right)=\underbrace{\left(\mathbf{a}_{z} \cdot \mathbf{a}_{z}\right)}_{=1}(\mathbf{r} \cdot \mathbf{r})-\left(\mathbf{a}_{z} \cdot \mathbf{r}\right)^{2}=r^{2}-z^{2}=x^{2}+y^{2} .
$$

It follows at once that

$$
\nabla f=\mathbf{a}_{x} \partial_{x} f+\mathbf{a}_{y} \partial_{y} f=2 x \mathbf{a}_{x}+2 y \mathbf{a}_{y}=2\left(x \mathbf{a}_{x}+y \mathbf{a}_{y}\right)
$$

b) In the cylindrical coordinates,

$$
\nabla f=2\left(x \mathbf{a}_{x}+y \mathbf{a}_{y}\right)=2 \rho \mathbf{a}_{\rho} .
$$

To see that, it is sufficient to read off from the Formula Sheet, $x=\rho \cos \phi, y=\rho \sin \phi$ and $\mathbf{a}_{x} \cos \phi+\mathbf{a}_{y} \sin \phi=\mathbf{a}_{\rho}$.

